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I. DENSITY DISTRIBUTION FOR A CORRUGATED SURFACE IN THE
LANDAU-GINZBURG-WILSON APPROXIMATION

The non-local density distribution ρ`(x, z) shown in Fig. 1 of the main paper was calculated using a (dimension
less) Landau-Ginzburg-Wilson (LGW) free-energy density functional

F [ρ(r)] =

∫
d3r

(
φ (ρ(r)) +

1

2
(∇ρ(r))

2

)
, (1)

where the local free energy density φ is approximated by the asymmetric double parabola:

φ(ρ) = min

(
κ2l
2

(ρ− ρl)2 ,
κ2v
2

(ρ− ρv)2
)
. (2)

The bulk densities and corresponding inverse correlation lengths are taken from the simulation results for the LJ
model. These are ρlσ

3 = 0.805, ρvσ
3 = 0.01, κlσ = 1.5 and κvσ = 3.0.

Minimization of (1) leads to the Euler-Lagrange equation

∇2ρ(r) =

{
κ2v (ρ(r)− ρv) for ρ(r) < ρm

κ2l (ρ(r)− ρl) for ρ(r) > ρm
(3)

where the matching density between the vapour and liquid phases is given by

ρm =
κlρl + κvρv
κl + κv

. (4)

We define the interfacial shape `(x) to be the surface of isodensity ρ(r) = ρm, where r = (x, `(x)). Assuming that
the interfacial shape is `(x) = `q cos(q x), the solution to the PDE is

ρ(r) =


ρv +

∑
n=0

Bne
βnz cos(n q x) for z < `(x)

ρl −
∑
n=0

Ane
−αnz cos(n q x) for z > `(x)

(5)
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where αn =
√
κ2l + (n q)2 and βn =

√
κ2v + (n q)2. The coefficients A0, A1,..., B0, B1,..., are obtained by matching

the densities at z = `(x), which yields the two linear equations:∑
n=0

Ane
−αn`(x) cos(n q x) = κv

ρl − ρv
κl + κv

(6)

and ∑
n=0

Bne
βn`(x) cos(n q x) = κl

ρl − ρv
κl + κv

. (7)

For a planar interface, the derivatives also match.
The density ρ(x, z) plotted in Fig. 1 of the main article is the numerical solution for qσ = 2 and `q = 0.1σ. The

matching equations were solved by series expansion of the exponentials up to order `4q. Finally, we calculate the
x-averaged density profile ρx(z). With respect to the asymptotic decay into the bulk phases, this average mimics
the thermal average of equation (5) in the main article, since it is equivalent to averaging over the set of harmonic
interfacial fluctuations at fix q and `q.

II. GAUSSIAN FILTER

We use a Gaussian filter to improve the accuracy of our simulation results, which allows us to obtain the decay
lengths for the equilibrium density profile ρ(z) and for the Fourier transformed correlation function C̃(q, z). The raw
simulation results are filtered by convoluting with a Gaussian which, for the density profile, reads

ρfiltered(z) =
1√

2π∆

∫
ρ(z′) exp

(
− (z − z′)2

2∆

)
dz′, (8)

This effectively smoothes the data between neighboring histogram bins, which have a width of δz = 0.125σ. In Fig. 1,
we plot the raw (blue empty circles) and filtered (full black circles) density profiles near the liquid-vapour interface.
Although both density profiles decay exponentially towards the bulk in agreement with the theoretical prediction
given by

ρ(z)− ρl ∼ exp(−κz), (9)

the filtering reduces the noise by a factor of 100. For ∆ = 0.5σ, we obtain our best estimate for κσ = 1.5± 0.05.
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FIG. 1: (Color online) The empty circles show the raw equilibrium density profile ρl − ρ(z). The red triangles also represent
the raw data for |ρl−ρ(z)| when ρl−ρ(z) < 0. The full circles are the filtered values using a Gaussian of width ∆ = 0.5σ. Note
that the filtered results have been shifted to match the raw data, since filtering produces a function with the same exponential
decay but slightly displaced. This figure corresponds to the inset of Fig. 2 in the main article.

For the correlation function C̃(q, z), we use a similar filter as above:

C̃filtered(q, z) =
1√

2π∆

∫
C̃(q, z′) exp

(
− (z − z′)2

2∆

)
dz′, (10)
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Figure 2 shows the results for C̃ (q, z), obtained using the ISM to define the interfacial position, for three values
of qσ = 0.15, 0.90 and 1.29. The black empty circles correspond to the raw data for qσ = 0.15. We observe an
exponential decay towards the bulk liquid

C̃ (q, z) ∼ e−κMD(q)z, (11)

over a distance of ≈ 2σ, until the signal goes below the noise ∼ ±0.0001. In order to reduce the noise level, we use
the Gaussian filter to gain a factor of 100 in the detected decaying signal. The stars in Figure 2 show the optimally
filtered results, obtained by using different values of ∆ over the range of z. In this way, we can identify the values
of κMD(q), obtained from (at least) two decades in C̃, even for wavevectors qσ > 1.0. One can also see the ultimate

asymptotic oscillatory decay of C̃ (q, z) for large z and q.
Finally, we comment that, in order to see non-local effects (that is, the q dependence of κMD), it is necessary to

consider wave vectors qσ ≈ 1. In turn, this means that our definition of the interface shape `(R) must remain ’good’
down to wavelengths of a few molecular diameters. The (percolative) ISM does this, but other (simpler) definitions,
for example the Local Gibbs Dividing Intrinsic Surface? ? ? , which would work perfectly well in the (macroscopic)
low−q limit, fail completely in this respect? ? .
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FIG. 2: (Color online) Correlation function C̃ (q, z) vs. z for different values of q: orange stars (qσ = 0.15), red stars (qσ = 0.90)
and blue stars (qσ = 1.29). Also shown is the unfiltered data for qσ = 0.15 (circles). This figure corresponds to the inset of
Fig. 3 in the main article.


